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AbIlract-This paper deals with some consequences of the thermodynamic approach12. 31 to the theory of
simple materials with fadina memory, It is proved that this approach implies that the time derivative of the
stress-relaxation modulus appearina in the isothermal lirst-order approximation of the theory must vanish
identically. This invalidates the claim that the linear theory of viscoelasticity can be considered as the
isothermallirst-order approximation of the theory presented inl2. 31.

I. INTRODUCTION

The theory of simple materials with fading memory has been reviewed in an extensive
monograph by Dill [4). To this lucid and comprehensive work the reader is referred for a
complete discussion on the subject, for quotations of original papers and for a fuller explana
tion of the notation adopted he.re. It was shown by Coleman and Noll in a paper dating back to
1961 [t) that, when a purely mechanical approach is followed, the finite linear theory of
viscoelasticity and thus, in particular, the classical infinitesimal theory of viscoelasticity, can be
considered as an appropriate first-order approximation of the theory of simple materials with
fading memory. Subsequently, in two papers dated 1964, Coleman [2, 3] gave a thermodynamic

. structure to the mechanical theory of simple materials with fading memory. Among other
things, Coleman showed that the mechanical theory of linear viscoelasticity can be viewed as
the isothermal first-order approximation of the theory he proposed. This result was derived
in[3] by an analysis which closely parallels that pursued by Coleman and Noll[t) for the purely
mechanical theory (see the remark in the footnote of p. 247 of Ref. [3)). The thermodynamic
theory, however, allowed Coleman to go further and find restrictions on the form of the
stress-relaxation modulus appearing in the first-order approximation he established. Yet, the
ultimate consequences of this thermodynamical approach appear to have not been considered.
It will be shown in this paper that, as a consequence of Coleman's thermodynamic approach to
simple materials with fading memory, the time-derivative of the above mentioned stress
relaxation modulus must vanish identically. This invalidates the claim that the linear theory of
viscoelasticity can be considered as an approximation of the thermodynamic theory proposed
in [3,4). The same criticism, however, does not apply to the purely mechanical theory presented
in[t).

In the original paper[3) Coleman referred to infinitesimal linear viscoelasticity. His analysis,
however, holds true also for the more general case of finite linear viscoelasticity (see [4], pp.
363-367]). 'For this reason the case of finite linear viscoelasticity will be treated in what follows.
The results to be proved, however apply also to the particular case of infinitesimal linear
viscoelasticity, since they are not dependent on the magnitude of the deformations inVOlved. Of
course, the strain history of the material is intended to be sufficiently near to a constant
deformation history so that a first-order approximation of the general constitutive equations can
be taken.

By magnitude of a second order tensor Twe shall understand the quantity ITI defined by

ITI = tr(TTT)II2.
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(1.1)
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The distance between two deformation histories will be measured in the functional space of all
the histories endowed with the h-norm introduced in [2, 3J. In particular, the h-norm in the space of
all the deformation histories E,'(s) defined in the interval 0 < S < 00 (past histories) is intended to be
given by

(1.2)

The function h(s) appearing in this relation is assumed to be positive, continuous and monotone
decreasing in the interval 0s s < x. Moreover, h(s) is supposed to be such that

lim SI12+6h(s) = 0, monotonically for large s,
.-ox

(1.3)

for some 15 > O. From these assumptions it follows that h(s) is bounded from above and from
below in the entire interval 0s s < 00. Following Coleman [3J, it will be assumed that the
constitutive functionals defining a simple material with fading memory are continuously Frechet
differentiable and continuously derivable .in the ordinary sense up to the order n 2: 2 in their
common domain of definition.

2. RESULTS FROM THE THERMODYNAMIC THEORY OF SIMPLE
MATERIALS WITH FADING MEMORY

Let S denote the rotated stress tensor defined by S =RtRT
, the tensors Rand t being

respectively the roatation tensor and the Cauchy stress tensor. If F denotes the deformation
gradient and U is the right stretch tensor, then R is defined by the relation F=RU. The strain
measure E=ku2 -1) will be adopted in what follows. For a given material point the past
history of E up to time t will be henceforth denoted by E,' = E,'(s) =E(t - s), 0< S < 00, while
the past history of the absolute temperature 8 up to time t will be denoted by fJ,' =fJ,'(s) =
8(t - s), 0< S < 00. The values of strain and temperature at time t will be simply denoted by E
and 8.

In the thermodynamic theory of simple materials with fading memory, the constitutive
equations for the specific free energy", and for the stress tensors S are found to be given by the
following functionals (see, e.g. [4], Section 4.10.1)

'" =~(E,', 8,'; E, 8),

s=pUDt:~(E,', 9,'; E, 9).

(2.1)

(2.2)

Here p denotes mass density while the symbol Dt: stands for the ordinary partial derivative
with respect to E. It is found, moreover, that

def - • - •
u =- c59",(E,'. 9,'; E, 919,') - 6t;",(E,'. 9,'; E, OlE,') 2: 0 (2.3)

for every thermodynamic process. The quantity u defined by (2.3) is called internal dissipation.
The functionals c5.~(E,', 8,'; E, 81,) and c5E~(E,', 8,'; E, 8/') are the Frechet derivatives of the
functional ~ with respect to the function arguments 8,' and E,', respectively. The present
analysis will be confined to processes occurring at constant 8 for all times before t. For these
processes the temperature history reduces to the constant history 8+ = 8(s) iii 8 = const for all
Os S < 00 and, accordingly, the dependence on the constant parameter 8 will be understood in
most of the formulae which follow.

The constitutive equation for S in a linear viscoelastic material can be expressed by

S(t)=S,,(E)+rK(E,s)Ei(s)ds, (2.4)
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where S,,(E) is the equilibrium value of S, while the fourth-order tensor K(E, s) is the so-called
stress-relaxation modulus. It can be shown (see, e.g. [4], Section 4.7) that eqn (2.4) may be
regarded as the isothermal first-order approximation of the general constitutive eqn (2.2) for

small difference histories Ei(s)~E,'(s) - E. 0< S < x. In particular, the integral in (2.4) can be

shown to be such that ([4], eqn 4.11.41)

for any symmetric tensor M and for any past history A(s). In eqn (2.5) the quantities E+ and M+
denote the constant strain histories E+ =E(s) =E and M+ =M(s) =M, 0s s < 00.

Let q denote the internal dissipation relevant to processes in which the temperature history
is the constant history 6+. Since the functionals I),~ and 8r.~ appearing in (2.3) are linear in their
last arguments, for a process occurring at constant temperature the inequality (2.3) can be
written in the form

q(t) =- 8r.~(E,', 6+; E, 6IE,') =-.(E,'; E)E,' ~O, (2.6)

where we have denoted by .(E,' ; E) a linear operatort (the Frechet derivative of ~ with respect
to E,') representing a mapping from the Hilbert space of all the functions Er' into the set of the
real numbers. Henceforth, the null element in a Banach space of linear operators will be
denoted by •.

3. PROOF THAT )(l£.s)-O

From the above premises, it will be proved in this section that the considered ther
modynamic theory of simple materials with fading memory leads to the conclusion that the
time-derivative of the stress-relaxation modulus K(E, s) must vanish for every value of E and s.
This implies that the isothermal first-order approximation of (2.2) for small difference histories
is, in fact, S=S,.{B). This approximation, therefore, cannot be regarded as the constitutive
equation of a linear viscoelastic material.

LEMMA 1. For any constant strain history E+ =E, for any symmetric tensor H and for any
arbitrary small E > O. it is possible to determine a scalar k> 0 in such a way that the past strain
history defined by

Hr' =H,'(s) =kHsll2+6 +E+

is such that

Proof. From definition (1.2) and from eqn (3.1) it follows that

(3.1)

(3.2)

(3.3)

The integral in this equation is positive and finite because h(s) is a continuous positive
monotone decreasing function in [0, :x:.), because I) > 0 and because relation (1.3) holds.
Therefore,

(3.4)

tThe dependence on the constant parameter 8 being understood.
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where 0 < a2 <:le. It turns out that relation (3.2) is satisfied when

k $ fI/2(aIHlr l ; (3.5)

which proves the lemma.
LEMMA 2. From inequality (2.6) and from the assumed hypotheses of differentiability of;j"

it follows that

(3.6)

for all constant strain histories E+ == E.
Proof. By applying eqn (2.6h to the strain history (ll) we get

since

. d (I)H,'(O) =E and H,'(s) =- dsH,'(s) =- 2+~ kS~-1/2H.

(3.7)

(3.8)

The functional ~ is assumed to be at least twice Frechet differentiable. It follows that the
functional ~(E,'; E) is Frechet differentiable and, thus, the relation

~(kHsJl2+8 + E+; E) == ~(E+; E) + ~.(E+; ElkHsll2+6)+o(lIkHsJl2+~IIIt)

=~E+; E) + ~E~E+; ElkHsI/2+~) + o<IIH/(s) - E+IIIt ) (3.9)

holds. Here, of course, the symbol o(IIAlllt ) denotes an operator with the property that the
expression (I/Allltr1o(IIAIIIt ) tends to • as jlAl/1t -+0. If the history H,' is sufficiently near to E+,
from (3.9), from (3.7) and from inequality (2.6) we get that

The l.h.s. of this inequality contains both a linear term in H and a quadratic one because ~~ is
linear in H. Since (3.10) has to be satisfied for aU symmetric H, the linear term in H must vanish;
hence (3.6) follows (see also eqn (4.l0.l8h of [4]).

THEOREM. If the stress-relaxation modulus K=K(E, s), regarded as a function of s, is
both integrable in every finite sub-interval of [0, x) and bounded in the entire interval [0, ::0), then

(3.11)

where 0 is the null fourth-order tensor.
Proof. Since eqn (2.5) is valid for any constant sYmmetric tensor Mand for any past history

A(s). it must be valid. in particular. for

A(s);e A,'(s) =Ms.

With this choice for A(s), eqn (2.5) becomes

(3.12)

-~ tr[ V-IrK(E, s) Ms ds V- 1M) == d~ d~ ;j,(E+ + aA/(s) + tJM+; E)la=o' (3.13)
/1=0

Since
. d
A' =--A '(s) =-M

r ds r
(3.14)
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and since

E+ +aA,' =aA,' and E+ +aA,'(Q) =E,

the r.h,s. of (3.13) can be put in the form:

In view of eqn (2.6)" we can set
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(3.15)

(3.16)

(3.17)

where UJl(t) is the internal dissipation relevant to the past history K" +aA,'. From (3.16). (3.17)
and (3.13), therefore. it follows that

Let. o~ the other hand, relation (2.6) be applied to the history

E'(s) = E+ +aB'(s).

(3.18)

(3.19)

where E+ is the constant history with constant value E. while a is a positive scalar and B'(s) is
any strain history such that B' (0) =O. It will henceforth be assumed that both Br' and Dr' are
bounded in the interval 0 <. S <. x. Since

E,' = aD,' and E'(O) =E, (3.20)

from (2.6) and (3.19) we get

cT(t) = -«)(E+ +aB,'; E) . aD,' =- [«)(E+; E) . aD,' +e5E«)(E+; ElaBr'> . aD,' +o(lIaB,'~h)' aD,']

a:0.

In view of relation (3.6) and of the fact that a> O. from (3.21) we get

cT~t) = -c%«)(E+; ElaB,') . D,' - o<llaB,'II,,)' D,' a: O.

(3.21)

(3.22)

Since the quantity e5E«)(E+; ElaB,') is linear in its last argument. it is convenient to introduce the
operator 6«)(E+; E) defined by

(3.23)

that denotes the Frechet derivative of «)(E,'; E) with respect to E,' calculated for E,' !E E+ (that
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is the Frechet 2nd derivative of ~ with respect to E,' calculated for E,' • r). Therefore, by
dividing both sides of (3.22) by a and by introducing (3.23) we get

(3.24)

From definition of operator o(II·lIh) it follows that the limit

(3.25)

holds true for any bounded history D/. Since not only Dr' but also 8r' are bounded, it is
immediate to argue from (3.25) that

.!.o</IaDr'llh) . 8r' =o(a).
a'

By means of this equation. relation (3.24) can be expressed in the form

That is

(3.26)

(3.28)

Since a does not depend on Dr', 8r', E+ and E, it is apparent from (3.28) that one can always
assume a to be so small that the relation

eT(t) = -a2BIIl(E+; E) . D,' . 8,' ~ 0

is met with any desired degree of accuracy. This clearly implies that

- BIIl(r; E) . D,' . 8,' ~ o.

Let us now consider any strain history C'(s) such that

C'(O) =kH,

(3.29)

(3.30)

(3.31 )

where k is any real number and H any symmetric tensor. It will be assumed that both C'(s) and
t,(s) are bounded in the interval 0< s < 00. Let H+ denote the constant history with value H
and let, moreover, apply relation (3.30) to the case in which Dr' has the form

Dr' =Cr' -kW.

From (3.30) and (3.32) we get

- 84t(E+; E) . (C,' - kn+) . C,' ~ 0,

because in the present case the time derivative of D,' coincides with C,'. By setting

inequality (3.33) can be expressed in the form

h+k84t(E+; E) . W . Cr' ~ O.

(3.32)

(3.33)

(3.34)

(3.35)
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From the hypotheses of derivability assumed for ~ [and hence for 4t(';.}], and from the
hypothesis that C,'(s) and C,'(s) are bounded, it follows that the scalar h defined by (3.34) is
finite. This scalar, moreover, does not depend on k. Indeed the only quantity that k affects is the
present value of the strain history C'(s), according to assumption (3.31). As it should be clear
from definition (3.34), however, the scalar h depend on the past history of C'(s), not on its
present value C'(O). Since no continuity assumptions have been introduced for the strain
histories that the material can undergo, the history C'(s) need not be continuous at S = O. By
appropriately choosing this history, therefore, we can make the scalar h assume values that are
independent of the value of k. The scalar k, however, can be chosen arbitrarily. It follows,
therefore, that relation (3.35) must be met for arbitrary values of k and for any value of h given
by (3.34). Consequently, the following relations

(3.36)

and

(3.37)

must necessarily hold true.
From eqn (3.17) and from the definition of Frechet derivative (see, e.g. [4), pp. 299-3(0), it

follows that

(3.38)

Here the operator 8E2~(E+; EI·,) denotes the Frechet 2nd derivative of ~(E,', E) with respect to
E,', calculated for E,' == E+. The history A(s) appearing in eqn (3.38) is, of course, the one
already introduced in (3.12), while the history M+ is the history with constant value M. In
deriving eqn (3.38), moreover, use of eqns (114) and (lIS) has been made. By adopting the
same notations introduced in (2.6) and (123), eqn (3.38) can be written in the more convenient
form

By applying eqn (3.36) to the case in which H+ == M+ and C,' iE A(s), we get

(3.40)

In view of this equation, eqn (3.39) yields

which owing to (118) gives

tr [V-IrK(E, s)Ms dSV-'M] =o.

Since eqn (3.42) must be satisfied for all symmetric tensors M, it implies that

(3.41)

(3.42)

(3.43)rK(E, s)s ds =O.

Therefore, by remembering that K(E, s) = -(dfds)K(E, $), and by integrating by parts the I.h.s.
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of (3.43), it can be inferred that the relation

lim {- eK(E, s)sM + ('" K(E, s) dS} =lim {.- [K(E, s)s]~ + (b K(E, s) ds + (X K(E, s) dS} =0
.r...co Jo .r-~ Jo J"

(3.44)

must be valid for any b in the interval [0, x]. If {, and {2 denote two appropriate values of s,
belonging respectively to the intervals [0, b] and [b, xJ, we can write eqn (3.44h in the form

lim {- eK(E, s)sJ~ +K(E, ~I)b +K(E, ~2)(X - b)} =lim {(K(E, ~2) - K(E, x)Jx}
x~ x~

+lim{[K(E, (I) - K(E, (2)Jb} =O.
x-

(3.45)

Since K(E, s) is bounded in [0,00), the first limit in (3.45h diverges unless

lim K(E, ~2) =lim K(E, x),
x~ X...Z

(3.46)

in which case the limit may tend to a finite value. Since, however, the second limit in (145h
tends to a finite value which depends on b, and since b can be arbitrary in [0, x], it follows that
eqn (3.45)2 can be satisfied only if

lim {[K(E, (2) - K(E, xlIx} = 0
x_oc

and

lim {[K(E, ~I) - K(E, ~2)Jb} = O.
x_oc

In view of the arbitrariety of b and, thus, of ~It eqn (3.48) implies, therefore, that

K(E, s) == Ko(E);

(3.47)

(3.48)

(3.49)

that is K cannot depend on s. Relation (3.49) is also sufficient to ensure that (3.47) is met. A
time-derivation of (3.49) yields (111) and, thus, the theorem is finally proved.

In more expressive terms the above theorem states that if the standard thermodynamic
theory is followed, the isothermal first order approximation of a simple material with fading
memory is a perfectly elastic material. Linear viscoelastic materials, therefore, fall outside the
scope of this theory. A result which is rather surprising both in view of the general character of
the constitutive equations on which the theory is based and in view of the fact that linear
viscoelastic materials have been shown in[l] to provide the first order approximation of the
purely mechanical theory of simple materials with fading memory. Owing to this result it can
reasonably be concluded that the thermodynamic approach adopted in[2,3] may turn out to be
unduly restrictive. Essentially the same conclusion has been reached on different grounds in a
recent paper{5].
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